

Inverted Region in Electrochemical Reduction of CO₂ Induced by Potential-dependent Pauli Repulsion

Leyu Liu, Hai Xiao*

Department of Chemistry, Tsinghua University, Beijing 100084 Email:liu-ly19@tsinghua.org.cn

- ➤ The CO₂ activation mechanism in eCO₂RR varies with *U*
- ➤ The barrier of the electron-transfer(ET) step in the SEPT mechanism exhibits an inverted region as *U* decrease

Methods

- > Grand canonical density functional theory (GC-DFT)
- ASE Atomic Simulation Environment
- JDFTx software for constant-potential modeling

Conclusion

- \succ CO₂ activation mechanism in eCO₂RR: SEPT mechanism at the common working $U \rightarrow CPET$ mechanism at the highly negative U.
- > The inverted region originates from the rapid rising of Pauli repulsion in the physisorption PEC as U decrease.
- ➤ Effective designs of electrocatalysts can suppress the adverse effect of Pauli repulsion on the kinetics of CO₂ activation, it is likely to be generally applicable to the electrochemical reduction reactions of other closed-shell molecules including H₂O, CO, and N₂.
- 1. <u>L. Liu</u>, H. Xiao. *J. Am. Chem. Soc.* **145**, 14267–14275 (2023).
- 2. M. T. M. Koper et al. *Nat. Energy* **4**, 732–745 (2019)